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Abstract

The laminar transport processes in a lid-driven square cavity ®lled with a water-saturated porous medium is
presented in this numerical investigation. A stable thermal strati®cation con®guration is considered by imposing a

vertical temperature gradient. The general formulation of the momentum equation is used such that both the
inertial and viscous e�ects are incorporated. The relevant momentum and energy characteristics of the porous
system are identi®ed with special consideration being given to the implications of the inertial e�ects. The Grashof

number in this study was ®xed at 104. A Nusselt number correlation is established based on the numerical results in
the parametric domain of Da � 0:001ÿ 0:1 and Ri � 10ÿ4 ÿ 5:0: 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of lid-driven ¯ows in cavities has been

a major topic for research studies due to its fundamen-

tal nature and owing to the wide spectrum of engineer-

ing applications that are associated with it. Examples

of such applications can be traced to oil extraction,

thermal management of electronic cooling and

improvement of performance of heat exchangers. The

simple rectangular geometry is often considered for

analyzing the momentum and energy transport pro-

cesses inside the cavity. The ¯ow is induced by sliding

the top horizontal wall at a constant speed, while the

heat transfer is triggered by sustaining a temperature
gradient between the top and bottom walls.

Many numerical techniques have been proposed
to tackle this fundamental problem [1±5]. Mean-
while, Kose� and Street [6] and Prasad and Kose�

[7] have performed experimental investigations of
mixed convection laminar ¯ows past two-dimen-
sional rectangular cavities. Most of the existing

studies in the literature on mixed convection lid-
driven ¯ows have been dedicated to situations where
the ¯uid ¯ow is not hampered by any porous struc-
ture being placed inside the cavity. An exception to

this is the numerical study reported by Vafai and
Huang [8], which analyzes the e�ect of forced con-
vection over intermittently emplaced porous cavities.

The utilization of a porous substrate for heat trans-
fer augmentation is an attractive choice given that
the e�ective thermal conductivity of the porous

structure could be several order of magnitudes
higher than the working ¯uid. Vafai and Huang [8]
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concluded that porous cavities do hold a promising

potential in regulating skin friction and enhancing
the rate of heat transfer. Their results were pre-

sented using various dimensionless groups such as
the Reynolds number, the Darcy number, the

Prandtl number. However, their investigation has

merely focused on forced convection aspect of the
con®guration. In addition, no speci®c formulation of

the e�ective thermal conductivity of the porous

medium was presented. On top of this, the e�ect of
thermal dispersion was not considered in the above

work. The mixing of local ¯uid streams in the pre-

sence of a temperature di�erence across the porous
medium yields an increase in the transported energy,

which is generally represented by a di�usive heat
¯ux. Subsequently, the inclusion of thermal dis-

persion e�ects aids in augmenting the energy trans-

port process and its incorporation in the simulation
would, thus, provide a better simulation of the

actual problem at hand [9].

The chief objective of the present numerical investi-

gation is to examine the characteristics of a lid-driven
¯ow in a stable thermally-strati®ed two-dimensional

square cavity ®lled with a water-saturated porous me-

dium. The general formulation of the momentum
equation in the presence of a porous medium is

employed such that it accounts for the inertial as well
as the viscous e�ects. Thermal dispersion e�ects have

also been incorporated in the mathematical model for
all the case studies analyzed in the current investi-
gation. The characteristics of the ¯ow and temperature
®elds are presented in terms of the Darcy number Da

and the Richardson number Ri. The investigation will
also explore the signi®cance of the inertial e�ects and
the appropriate measures for depicting the domain

where its impact is signi®cant on the heat transfer
results. Finally, the investigation was completed by
documenting the heat transfer results in the form of an

average Nusselt number correlation for the general
model over a wide range of Ri. The correlation is
essential in demonstrating the enhancement achieved in

heat transfer as compared to that given by the conduc-
tive mode for the case of a stationary top wall.

2. Analysis

2.1. Mathematical formulation

The con®guration described in the present investi-
gation is shown in Fig. 1. The geometry is essentially a
two-dimensional square cavity with a side length H. In

Nomenclature

B coe�cient of stagnant conductivity
c speci®c heat at constant pressure (J kgÿ1

Kÿ1)
dp sphere particle diameter (m)
Da Darcy number, K=H 2

F geometric function de®ned in Eq. (4)
~g gravitational acceleration vector (m sÿ2)
Gr Grashof number, gbDTH 3=n 2

f

H side length of the cavity (m)

k thermal conductivity (W mÿ1 Kÿ1)
K permeability (m2)
Nu Nusselt number
Pr Prandtl number, vf=af

Pe Peclet number, Uo H/vf
Re Reynolds number, UoH/vf
Ri Richardson number, Gr=Re 2

t time (s)
T temperature (K)
u,v interstitial velocity components (m sÿ1)
v interstitial velocity vector (m sÿ1)
V, U dimensionless interstitial velocity components
x, y Cartesian coordinates (m)

X, Y dimensionless coordinates

Greek symbols
a thermal di�usivity (m2 sÿ1)
b thermal expansion coe�cient (Kÿ1)
e porosity
l solid-to-¯uid thermal conductivity ratio
mf dynamic viscosity (Ns mÿ2)
vf kinematic viscosity (m2 sÿ1)
y dimensionless temperature, �Tÿ Tc�=�Th ÿ Tc�
O vorticity (sÿ1)
o dimensionless vorticity, OH=U0

c stream function (m2 sÿ1)
C dimensionless stream function, c=HU0

r density (kg mÿ3)
s capacity ratio, �e�rc�f��1ÿ e��rc�f �=�rc�f
t dimensionless time, tUo/H

Subscripts
c cold
e� e�ective property

f ¯uid
h hot
s solid

h i volume-averaged quantity
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addition, the cavity is ®lled with a porous material
that is homogeneous and isotropic. The thermophysi-

cal properties of the working ¯uid and the solid matrix
of the porous medium are taken to be constant except
for the density variation, which is handled according

to the Boussinesq approximation. Furthermore, the
solid matrix is made of spherical particles, while the
porosity and permeability of the medium are assumed

to be uniform throughout the cavity. The choice of a
variable-porosity medium is altered in favor of a con-
stant-porosity medium due to the high porosity value

considered in this investigation. Moreover, the
presence of sharp edges at the corner of the cavity
would not make the familiar exponentially decaying
porosity model a reasonable choice.

The sliding top wall, which moves from left to right
at a constant speed U0, is maintained at a higher tem-
perature than the stationary bottom wall. Meanwhile,

the two vertical walls are subjected to insulated bound-
ary conditions. This produces a con®guration with a
stable strati®cation. The local thermal equilibrium con-

dition is invoked here under the presumption of a
small temperature di�erence between the ¯uid and the
solid.

The point governing equations for mass, momentum
and energy are transformed to the macroscopic level
using the volume-average technique as outlined by
Whitaker [10], and later reformulated by Amiri and

Vafai [9]. The canonical form of these equations can
be expressed as such

r � hvi � 0 �1�

1

e
@v

@ t
� 1

e 2
h�v � r�vi

� ÿ 1

rf

rhPi f � nf

e
r 2hvi ÿ nfhvi

K
ÿ F����

K
p jhvijhvi

ÿ b�hTi ÿ Tc �~g �2�

�
e�rc�f��1ÿ e��rc�s

�DhTi
Dt
� r � �keff � rhTi� �3�

where b is the volumetric expansion coe�cient, cf and
cs the ¯uid and solid speci®c heats at constant pressure

respectively, ~g the gravitational acceleration vector, keff

is the e�ective thermal conductivity of the porous med-
ium, vf the ¯uid kinematic viscosity, hPi f the average

pressure read o� a pressure gage, rf and rs the ¯uid
and solid densities respectively, t stands for time, T for
temperature, and v represents the interstitial velocity
vector. It is worth noting that the velocity and the tem-

perature are both taken here as volume-averaged quan-
tities.
Eq. (2), which is referred to here as the generalized

form of the momentum equation, allows for a smooth
transition between the ¯uid ¯ow through a porous
medium and the Navier±Stokes equation in the space

void of a porous medium as K41: The second term
on the right-hand side is the Brinkmann term, which
accounts for the presence of a solid boundary. The vis-
cous boundary layer in the presence of a porous med-

ium is very thin for most engineering applications [11].
However, its inclusion is essential for the heat transfer
calculations. Furthermore, the pressure drop is main-

tained by the combined e�ects of the Darcy resistance,
represented by the third term, and the inertial e�ects
represented by the quadratic term. The quadratic

nature of the inertial e�ects makes their contribution
more noteworthy in hindering the ¯uid motion as ¯ow
activities intensify. In the absence of the inertial e�ects,

Eq. (2) is known as the Brinkmann-extended Darcy
model. Further insight into the physical interpretation
of the various terms appearing in the above equations
are provided in a recent review by Vafai and Amiri

[12]. The averaging symbol hi will be omitted hereafter
for convenience.
The geometric function F and the permeability of a

porous medium K are based on Ergun's experimental
investigation [13], and is expressed by Vafai [14] as fol-
lows

F � 1:75�����������
150e3
p �4�

K � e3d 2
p

150�1ÿ e� 2
�5�

where dp is the solid particle diameter and e is the po-
rosity of the porous medium. The value of dp and e
considered for this investigation are 1 mm and 0.9, re-
spectively.
The e�ective thermal conductivity of a porous me-

dium emerges as a combination of the conductivities
of two constituents; a stagnant component and a dis-
persion componentFig. 1. The con®guration of the problem under consideration.
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keff � ke � kd �6�
where ke stands for the stagnant conductivity and kd

stands for the dispersion conductivity. In the ongoing
investigation, the stagnant component is based on the
experimental ®ndings of Zehner and SchluÈ ender [15] as

follows

ke

kf

�
ÿ
1ÿ

�����������
1ÿ e
p �

ÿ 2
�����������
1ÿ e
p

1ÿ lB

�
"
�1ÿ l�B
�1ÿ lB� 2

ln�lB� � B� 1

2
� Bÿ 1

1ÿ lB

#
with

l � kf

ks

and B � 1:25

�
1ÿ e
e

� 10
9

�7�

whereas the dispersion conductivity is determined
based on the experimental correlation reported by
Wakao and Kaguei [16] given by

kd
x

kf

� 0:5
�jvjdp=nf

�
Pr �8�

kd
y

kf

� 0:1
�jvjdp=nf

�
Pr �9�

where the modulus of the velocity vector jvj �����������������
u 2 � v 2
p

with u and v being the interstitial velocity in
x and y directions, respectively.
In accordance with the problem description, the in-

itial and boundary conditions are presented as

v � 0, T � 0 for t � 0

v � �1, 0� at y � H, 0RxRH for t > 0

v � 0 at y � 0, 0RxRH for t > 0

and at x � 0, H, 0RyRH for t > 0

@T

@x
� 0 at x � 0, H, 0RyRH

T � Tc at y � 0, 0RxRH

T � Th at y � H, 0RxRH �10�

2.2. Vorticity±stream function formulation

Introducing the formulation of the vorticity O and
the stream function c as

u � @c
@y

, v � ÿ@c
@x

�11�

O � @v

@x
ÿ @u
@y

�12�

The momentum equation may be accordingly pre-
sented in the following form

e
@O
@ t
� u

@O
@x
� v

@O
@y

� enf

 
@ 2O
@x 2
� @

2O
@y 2

!
ÿ e 2nf

K
Oÿ Fe 2����

K
p jvjO

� Fe 2����
K
p

�
u
@ jvj
@y
ÿ v

@ jvj
@x

�
� e 2gb

@T

@x
�13�

Dimensionless forms of the governing equations will
be used to facilitate the handling of the governing
equations

e
@o
@t
�U

@o
@X
� V

@o
@Y

� e
Re

�
@ 2o
@X 2

� @ 2o
@Y 2

�
ÿ e 2

DaRe
oÿ Fe 2�������

Da
p jvjo

� Fe 2�������
Da
p

�
U
@ jvj
@Y
ÿ V

@ jvj
@X

�
� e 2Ri

@y
@X

�14�

�
@ 2C
@X 2

� @ 2C
@Y 2

�
� ÿo �15�

s
@y
@t
�U

@y
@X
� V

@y
@Y

�
��

keff, x

kf

@ 2y
@X 2

� keff, y

kf

@ 2y
@Y 2

�

�
�
@keff, x=kf

@X

@y
@X
� @keff, y=kf

@Y

@y
@Y

��
=Pe �16�

where the capacity ratio s � be�rc�f �
�1ÿ e��rc�sc=�rc�f , and Pe is the Peclet number. The
dimensionless variables appearing in the equations

above are de®ned as such

X � x

H
, Y � y

H
, t � tU0

H
, U � u

U0
,

V � v

U0
, o � OH

U0
, C � c

HU0
and

y � Tÿ Tc

Th ÿ Tc

�17�

The total rate of heat transfer at a given height is
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attributed to conductive and convective modes of heat
transfer, and can be written in terms of the overall

Nusselt number as such

Nu � ÿ
�1
0

�
PeVyÿ keff, y

kf

@y
@Y

�
dX �18�

Unlike the classical ¯ows in the absence of porous
media, the incorporation of the e�ective thermal con-
ductivity in modeling the conductive contribution is a

key in providing a more accurate simulation of the
energy transport process. This is vivid from the in-
clusion of the stagnant component, as given by Eq.

(7), and the thermal dispersion conductivity in the
transverse direction as given by Eq. (9).
The thermophysical properties chosen in this study

for the ¯uid and the solid phase belong to water and

copper, respectively. This particular combination of
¯uid and solid is often associated with porous metal
heat exchangers. The numerical data were evaluated at

300 K as such

Copper Saturated water

rs = 8933 kg mÿ3 rf = 997 kg mÿ3

cs = 385 J kgÿ1 Kÿ1 cf = 4179 J kgÿ1 Kÿ1

ks = 400 W mÿ1 Kÿ1 kf = 0.613 W mÿ1 Kÿ1

mf = 855� 10ÿ6 Ns mÿ2

b � 0:0033 Kÿ1

2.3. Numerical scheme, procedure and accuracy
considerations

Control-volume approach is employed to handle the
governing equations. The momentum and the energy
equations may be written in the following format

df
@f
@t
� @

@X

�
Ufÿ Gf

@f
@X

�
� @

@Y

�
Vfÿ Gf

@f
@Y

�
� Sf

�19�
where f stands for either o or y with

df � e, Go � e
Re

, So

� Fe 2�������
Da
p

�
U
@ jvj
@Y
ÿ V

@ jvj
@X

�
ÿ Fe 2�������

Da
p jvjo

ÿ e 2

DaRe
o� e 2Ri

@y
@X

�20a�

dy � 1:0, Gy � 1

Pe
, Sy

�
�
@keff, x

@X

@y
@X
� @keff, y

@Y

@y
@Y

�
=Pe �20b�

The central-di�erencing format was applied to all the
convective and di�usive terms. The transient ®nite

di�erence equations, Eqs. (14) and (16), were solved
using the Alternating Direct Implicit algorithm (ADI).
Furthermore, the power-law technique as outlined by

Patankar [17] was utilized in conjunction with ADI.
The splitting nature o�ered by the ADI method in
each direction facilitates the use of power-law which is

solely applicable in a one-dimensional fashion. The
convergence of the solution toward a steady state was
accelerated by use of the false transient method. Suc-

cessive over relaxation method (SOR) was employed to
solve for the ¯ow kinematics relation represented by
Eq. (15). With an improved guess of Cn�1

i, j at hand,
U n�1

i, j and V n�1
i, j are calculated from the de®nition of

the stream function

U n�1
i, j �

Cn�1
i, j�1 ÿCn�1

i, jÿ1
2DY

and

V n�1
i, j �

Cn�1
iÿ1, j ÿCn�1

i�1, j
2DX

�21�

The vorticity on the boundaries is expressed in terms
of the primitive velocity variables as

oi, 1 �
ÿÿ 4Ui, 2 �Ui, 3

�
2DY

,

oi, N �
ÿÿ 3Uo � 4Ui, Nÿ1 ÿUi, Nÿ2

�
2DY

,

o1, j �
ÿ
4V2, j ÿ V3, j

�
2DX

and

oM, j �
ÿÿ 4VMÿ1, j � VMÿ2, j

�
2DX

�22�

Steady state condition was recognized when the di�er-
ence in the maximum norm of both the vorticity and
the temperature values became less than 10ÿ6.
A couple of measures were introduced to assess the

validity of the numerical scheme. First, the sensitivity
of the numerical outcome was examined by systemati-

cally increasing the mesh size until further re®nement
of the mesh size agreed to better than one percent
di�erence in the computational solution. A mesh size
of 81 � 81 was found adequate to simulate the ¯ow

and thermal responses of the problem under consider-
ation. Fig. 2 depicts the distribution of the horizontal
velocity and the temperature distribution inside the

cavity at X � 0:5 being plotted against the vertical
coordinate for Da � 0:1, Gr � 104 and Ri � 1:0: As
can be seen from Fig. 2, the results con®rm the choice

of the mesh size. The second measure for the vali-
dation process composed of comparing the outcome of
the numerical code against a reliable documented
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Fig. 2. Grid independence evaluation for Da � 0:1 and Ri � 1:0:
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work. Also, a ®nite-element software package
(FIDAP) was used to execute the same validation
cases for an additional source of con®dence. The nu-

merical study reported by Iwatsu et al. [5] was chosen
as a basis for this comparison. Since their results were
merely generated for a lid-driven cavity in the absence

of a porous medium with air being the working ¯uid;
the code was executed for a highly permeable medium
�Da � 1�: The outcome of the comparison, which was
conducted for Gr � 102, is summarized in Tables 1

and 2. It reveals that the maximum discrepancy
between the present numerical results and that of
Iwatsu et al. [5] is equal or less than 4% for the vel-

ocity and Nusselt number predictions. What is more,
the results in Table 2 show that the FIDAP predic-
tions, which is presented for the Nusselt number pre-

dictions for brevity, are in better overall agreement
with the present numerical investigation with a di�er-
ence of 3% or less. Accordingly, the comparisons
reveal a satisfactory agreement and would, hence,

boost con®dence in the generated results.

3. Results and discussions

The e�ects of the Darcy number and the Richardson

number on the ¯ow and thermal behaviors of the po-
rous cavity are investigated. The Darcy number, which
is directly proportional to the permeability of the po-

rous medium, was set to vary between 0.001±0.1. The
Richardson number is de®ned as the ratio of Gr=Re 2,

which re¯ects a dominant conduction mode when
Gr=Re 2rO�1�, while it resembles similar lid-driven

cavity ¯ow behavior for a non-strati®ed ¯uid when
Gr=Re 2RO�1� [5]. The Richardson number in the
ongoing investigation was varied in the range of 10ÿ4±
5.0 by varying the Reynolds number while the Grashof
number was ®xed at 104. As mentioned earlier, the in-
vestigation is primarily concerned with the impact of

the inertial e�ects on the ¯ow and heat transfer inside
the porous cavity. Hence, comparisons are made
between the generalized model and the Brinkmann±

extended Darcy model (hereafter B±e Darcy model).
What is more, these comparisons are demonstrated by
plotting the predicted velocity and temperature ®elds
at halfway through the horizontal distance against the

vertical coordinate. However, the velocity ®eld has
been displayed using the horizontal velocity component
only for brevity. In addition, contour plots for the

stream function as well for the temperature inside the
cavity are documented.

3.1. E�ect of the Darcy number

Fig. 3 depicts the horizontal velocity and the tem-

perature distributions for a ®xed value of Ri � 10ÿ2:
The results show an increase in the velocity and tem-
perature magnitudes predicted by the B±e Darcy

model due to omission of inertial e�ects. Moreover,
this increase is more pronounced for higher values of
the Darcy number due to increase in ¯ow conductance,

i.e., the permeability of the porous structure. Appar-
ently, the increase in the Darcy number induces ¯ow
activity deeper into the cavity, which causes more

energy to be carried away from the sliding top wall
toward the bottom. As a result, higher temperature
readings are predicted when descending farther inside
the cavity. This con®nes the conduction regime to a

narrow region from the bottom wall. In the conduction
dominated region, the temperature predicted by the B±
e Darcy model remains slightly higher than that pre-

dicted by the generalized model. This is most likely
due to some lingering ¯ow activities in this particular
region. Overall, the decrease in the Darcy number con-

tributes further to ¯ow suppression sustained by the
stable strati®cation.
Fig. 4 displays the results for Ri � 6:25� 10ÿ4 and

con®rms the above stated observations and, also, indi-

cates that the inertial e�ects hinder momentum and
energy transport. However, the impact of the inertial
e�ects on thermal behavior seems to be of less signi®-

cance though, except for Da � 0:1 where considerable
elevation in the ¯ow and thermal activities is mani-
fested. It is noted that the temperature pro®le pre-

dicted by the B±e Darcy model for Da � 0:1 dips
slightly toward the center of the cavity. This is due to
the presence of a relatively active ¯uid motion that

Table 1

Comparison of the maximum and minimum values of the vel-

ocity components at the mid-section of the cavity between the

present work and those of Iwatsu et al. [5]

Ri � 1� 10ÿ2 Ri � 6:25x10ÿ4

Present Iwatsu et al. [5] Present Iwatsu et al. [5]

Umin ÿ0.2122 ÿ0.2037 ÿ0.3099 ÿ0.3197
Umax 1.000 1.000 1.000 1.000

Vmin ÿ0.2506 ÿ0.2448 ÿ0.4363 ÿ0.4459
Vmax 0.1765 0.1699 0.2866 0.2955

Table 2

Comparison of the average Nusselt number at the top wall

between the present solution and that of Iwatsu et al. [5]

Parameter Present Iwatsu et al. [5] FIDAP

Ri � 1� 10ÿ2 2.01 1.94 1.99

Ri � 6:25� 10ÿ4 3.91 3.84 4.02

Ri � 1� 10ÿ4 6.33 6.33 6.47
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approaches zero in the central region. Owing to the

larger magnitude of velocity predicted by the B±e

Darcy model; its impact on thermal behavior is

obviously more pronounced.

In order to assess global in¯uence of the inertial

e�ects, the streamlines and isotherms distribution

inside the entire cavity is presented for Ri �
6:25� 10ÿ4 in Figs. 5 and 6 using the generalized

model and the B±e Darcy model, respectively. As seen

from Fig. 5, the streamlines collapse together toward

the right top corner where the sliding top wall

impinges on the vertical right wall. In addition, the

Fig. 3. The horizontal velocity and the temperature ®elds presented at di�erent values of the Darcy number.
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results show that the increase in Da value causes the

center of the vortex to move downward toward the

center of the cavity. On the other hand, the decrease in

Da precludes the streamline intensity level and prevents

downward ¯ow penetration, which causes the stream-

lines to stretch too thin in a shallow depth away from

the top wall. Meanwhile, the isotherms appear to

assume the sliding top wall temperature in the bulk of

the cavity especially toward the right vertical wall,

which implies that the ¯uid is well mixed due to the

mechanically-induced convection. It is apparent that

the increase in Da expands the domain for which the

Fig. 4. The horizontal velocity and the temperature ®elds presented at di�erent values of the Darcy number.
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convection regime is dominant. Consequently, the tem-

perature gradients in the vertical direction become

steeper toward the bottom wall where the conduction

regime is dominant due to minimal ¯ow activities.

These e�ects are more pronounced for the predictions

given by the B±e Darcy model as depicted in Fig. 6.

The center of the vortex has been further pulled

toward the top right corner as Da increases. Moreover,

the region underneath the sliding top wall is observed

to grow relatively thickness wise since the inertial

e�ects are silenced. The increase in ¯ow predictions by

the B±e Darcy model has relatively caused further

energy to be carried away from the top wall and into

the cavity.

The presentation of the ®eld variables is further

stretched to depict the case for which the buoyancy

e�ects are of equal weight to the sliding lid, i.e., Ri �
1:0: The contour results, which are generated using the

generalized model, are shown in Fig. 7. Moreover, the

contour intensity labeling was altered due to the clus-

tering of the lines near the sliding lid for the stream-

lines and toward the bottom wall for the isotherms.

Instead, the maximum and the minimum values were

displayed on each graph. The results show weakened

Fig. 5. The streamline and the isotherm patterns illustrated for Ri � 6:25� 10ÿ4 using the generalized model.
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¯ow activities due to strati®cation, which is suggested

by the formation of a separate cell in the lower half of

the cavity. This formed cell appears to grow in size for

Da � 0:01 and ultimately separates into minor cells as

the Darcy number decreases to Da � 0:001: Appar-

ently, much smaller contour levels seems necessary to

capture these minor cells toward the bottom corners of

the cavity, which should cause further clustering of the

lines. The readings from the temperature contours

point out that conduction is the dominant mode of

heat transfer and that convection heat transfer is con-

®ned to the upper right corner. As noted earlier, this

con®ned zone enlarges somewhat as the openness in
the porous medium increases which allows more ¯uid

penetration into the porous medium.

3.2. E�ect of the Richardson number

Fig. 8 illustrates the velocity and the temperature
®elds for Ri � 10ÿ2, 2:5� 10ÿ3 and 1:11� 10ÿ3 with a

®xed value of Darcy number that is equal to 0.1. As
displayed in the ®gure, the ¯ow activity inside the cav-
ity intensi®es as the Richardson number decreases.
Apparently, the discrepancy in the magnitude of the

Fig. 6. The streamline and the isotherm patterns illustrated for Ri � 6:25� 10ÿ4 using the B±e Darcy model.
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Fig. 7. The streamline and the isotherm patterns illustrated for Ri � 1:0 using the generalized model.
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velocity predicted by the two models is directly pro-

portional to the increase in the mechanical e�ect

o�ered by the sliding wall. The discrepancy in velocity

predictions between the two models has subsequently

impacted the temperature results. However, the devi-

ation in temperature pro®le between the generalized

model and the B±e Darcy model seems to be less pro-

nounced for this particular Darcy number. Apparently,

Fig. 8. The horizontal velocity and the temperature ®elds presented at di�erent values of the Richardson number.
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further increase in the Ri value will inhibit ¯uid
motion due to the strong strati®cation in the ¯uid

layers.

3.3. Nusselt number correlation

Due to the extensive number of cases being per-
formed in the ongoing investigation, the overall Nus-

selt number predictions for the generalized model in
the range of 0:001RDaR0:1 and 10ÿ4RRiR5:0 were
documented in the form of the following correlation:

Nu � 0:119�Re�0:78�Ri�0:29
�
0:39

� 5:3� 10ÿ3ReDa0:57
�

The correlation was found to ®t the numerical predic-
tions with a maximum discrepancy of 17% occurring

at Da � 0:1 and Ri � 0:1: A sample of the relative dis-
crepancies between the correlation and the actual nu-
merical predictions are listed in Table 3 for a handful

of Ri values at Da � 0:1: The results in Table 3 clearly
re¯ect the implications of thermal strati®cation in hin-
dering ¯uid motion and, thus, the heat transfer level.

The correlation suggests that heat transfer rate is
strongly dependent on Re as compared to Da and Ri.
Moreover, the small coe�cient of the ReDa term was
deliberately retained to highlight the signi®cant

increase in Nusselt number predictions due to the pre-
sence of a porous medium. It is obvious here that the
increase in the Da value will bring about an increase in

the Nusselt number since more ¯uid can penetrate into
the porous matrix. Several additional features could
also be explored upon further stretching the openness

of the porous structure toward classical cavity ¯ows
�Da � 1�, which invites further investigation in this
area.

4. Conclusions

The problem of a laminar lid-driven square cavity
®lled with a water-saturated porous medium has been

investigated. The characteristics of the ¯ow and tem-
perature ®elds in the porous cavity were analyzed

under stable thermal strati®cation with emphasis on
the in¯uence of the quadratic inertial e�ects. In ad-
dition, pertinent dimensionless groups such as the

Darcy number and the Richardson number were
utilized in the undergoing analysis. The results imply
that the inertial e�ects retard momentum and energy

transport. However, such e�ects are found to be more
pronounced for the ¯ow behavior, which makes the
outcome of the B±e Darcy model to overpredict the

results produced by the generalized model especially at
higher values of Da or lower values of Ri. Further-
more, the increase in Da was found to induce ¯ow ac-
tivities causing an increase in the fraction of energy

transport by means of convection. This conclusion is
also valid for a decrease in Ri.
The overall observation indicates that a stable strati-

®cation suppresses ¯ow motion, which is further
strengthened by the presence of a porous medium in
the cavity. Finally, the numerical results for the gener-

alized model were documented by developing a corre-
lation based on the predicted average Nusselt number
in the range of Da � 0:001±0:1 and Ri � 10ÿ4±5:0:
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